Схема полосового фильтра, собранного на базе операционного усилителя
Рис. 6.24. Схема, позволяющая изменять частоту фильтра при ограниченном воздействии на ее переходную характеристику
6.5.2. Активный ключ
С помощью введения положительной обратной связи (через неинвертирующий вход) из стандартной схемы активного полосового фильтра (см. рис. 6.23) можно получить генератор, отличающийся как простотой, так и легкостью настройки (рис. 6.25). Амплитуда сигнала устанавливается на неинвертируемом входе так, что синусоидальные колебания на выходе могут быть легко ограничены для обеспечения достаточной стабильности работы генератора. Все, что направлено на повышение надежности замка (здесь предусмотрено переключение на вторую частоту в определенной последовательности с первой и на определенное время), реализовано в ключе, а в схему замка введены соответствующие дополнительные цепочки. Если время работы ключа не ограничивается автоматически, то самым простым решением здесь может быть управление им вручную. Пример подобного генератора представлен на рис. 6.26.
Рис. 6.25. Превращение полосового фильтра в генератор посредством введения положительной обратной связи
В устройстве по схеме на рис, 6.26 можно применить интегральную микросхему К553УД2 без каких-либо изменений.
Рис. 6.26. Практическая схема генератора с переключением частоты
6.5.3. Ввод и обработка сигнала ключа
Гальваническая связь опасна не только перевозбуждением (образованием высших гармоник), при котором замок может срабатывать на сигналы других частот, но и возможностью выхода из строя входного каскада при подаче слишком большого входного напряжения. Эту возможность можно предотвратить с помощью оптоэлектронной связи между ключом и замком, обеспечиваемой, например, установкой светодиода в передатчике и фототранзистора в приемнике. Однако при этом активный фильтр сохраняет определенную чувствительность к первой высшей гармонике входного напряжения (частота равна половине заданной частоты).
Для ее эффективного подавления может быть использовано ограничение входного сигнала, а также введение фильтра высоких частот или полосового фильтра (возможно, со слегка изменяемой резонансной частотой). Решающее значение имеет правильный выбор максимально допустимой амплитуды сигнала на входе активного фильтра, которая в описанном здесь устройстве может соответственно изменяться. Если после реализации всего сказанного выше амплитуда помехи на выходе первого операционного усилителя в схеме, показанной на рис. 6.27, остается ниже амплитуды, необходимой для срабатывания светодиодов, то на второй усилитель она вообще не повлияет.
Рис. 6.27. Схема для исследования влияния ограничения напряжения на входе и оптоэлектронной связи (правая часть схемы, обозначенная фигурной скобкой, соответствует обоим приемным блокам ЕТ1 и ЕТ2 реализованного варианта замка, имеющего две резонансные частоты, см. рис. 6.30)
Устройство на рис. 6.27 следует рассматривать как экспериментальное, предназначенное для изучения подобных проблем при условиях, отличающихся от рассмотренных. В проведенных экспериментах при входном напряжении, равном уже нескольким десяткам милливольт, на выходе получали стабильную амплитуду сигнала с пиковым напряжением более 6 В, которая почти не изменялась при повышении входного напряжения на два порядка. Напряжение питания при этом было как синусоидальной, так и прямоугольной формы.
В устройстве по схеме на рис. 6.27 используются интегральные микросхемы, аналогичные отечественным К553УД2, и транзисторы, близкие к КТ312Б, КТ342А, КТ358В. Светодиоды — АЛ307 с различными буквенными индексами, в зависимости от желаемого цвета свечения. Фототранзистор ФТ-1 или самодельный, например, на базе П111А, у которого металлический колпачок корпуса снят, а кристалл защищен от влаги свегопрозрачным клеем или лаком.