Соединения типа А2В6

         

Метод диссоциации или восстановления газообразных соединений


 

 

Источником материала для роста кристалла могут служить легколетучие химические соединения компонентов, которые под­вергаются термической диссоциации или восстановлению соот­ветствующим газообразным восстановителем на поверхности ро­ста, например:

SiCI4 + 2H2  ÛSi + 4HCl;    SiH4 Û Si + 2H2 .

Процессы кристаллизации осуществляются в этом случае в две последовательные стадии' 1) выделение вещества в результате химической реакции разложения соединения и 2) встраивание атомов в решетку кристалла. Для выделения вещества исполь­зуются гетерогенные обратимые реакции, константы равновесия которых зависят, как обычно, от температуры и концентраций всех газообразных компонентов. Это означает, что даже при не­больших изменениях условий возможен обратный химический процесс, т. е. вместо кристаллизации вещества его растворение. Поскольку при реакции разложения выделяются газообразные продукты, для достижения стационарного, равномерного процес­са, их необходимо непрерывно удалять, для чего всегда целесо­образно использовать проточные системы.

Количество кристаллизующегося вещества, выделяемое в еди­ницу времени, определяется выходом реакции разложения со­единения при данных температуре, концентрациях компонентов реакции и скорости протекания газовой смеси.

Известно, что при реакции, протекающей на поверхности раз­дела де},\ фаз, всегда наблюдается резкое снижение энергии ак­тивации по сравнению с тем же процессом, протекающим цели­ком в паровой фазе. Поверхность раздела фаз играет в этом случае роль катализатора реакции. Каталитическая активность поверхности зависит от природы вещества и его агрегатного со­стояния. Так, например, было установлено, что каталитическая активность расплавленною кремния выше его активности в твер­дом состоянии (при температурах, близких к температуре плав­ления). Следовательно, можно ожидать, что при идентичных условиях проведения процесса количество вещества, выделяю­щееся в начальный момент на различных поверхностях (напри­мер, германия на германии и на флюорите), может быть раз­лично.


Каталитическая активность кристаллической поверхности данного вещества зависит от состояния этой поверхности, присут­ствия на ней активных мест. Такими активными местами могут быть, например, места роста (ступеньки и изломы на них), ме­ста выхода краевых дислокаций, области скопления примесей, т. е. активными местами, катализирующими химический процесс, являются области поверхности с повышенным значением химиче­ского потенциала. Это позволяет считать, что наличие на поверх­ности роста активных мест может обеспечивать локальный сдвиг равновесия в ту или иную сторону. Такой же локальный сдвиг равновесия реакции может происходить при изменениях концент­рации реагентов в слое газовой фазы, примыкающем к поверх­ности роста.

Взаимосвязь между химическими процессами и процессами кристаллизации в большинстве случаев настолько тесная, что рассматривать химическую реакцию просто как удобное средст­во доставки кристаллизующегося вещества к растущему кристал­лу, по-видимому, нельзя. Химические процессы, вернее их ло­кальные сдвиги вблизи активных мест, оказывают непосредст­венное воздействие на совершенство растущего кристалла. При изготовлении эпитаксиальных пленок кремния путем разложения хлоридов кремния монокристалличность их возможна только тогда, когда температура подложки превышает .примерно 1050° С; при разложении же иодидов кремния мопокристаллические плен­ки получаются при температуре 850—900° С. Микроморфология поверхности пленок, выращенных хлоридным методом, изменяет­ся в значительной степени при изменении состава газовой смеси и температуры.

Обычное понятие пересыщения, которое определяет термоди­намическую сущность роста кристалла, для роста посредством химических реакций оказывается неприменимым. Определение пересыщения как отношения количества вещества, находящего­ся в газовой фазе в виде соединения, к равновесному значению давления его пара при температуре подложки, не имеет смысла.

«Строительный материал» кристалла выделяется непосред­ственно на поверхности роста в результате химической гетеро­генной реакции.


Поэтому основной характеристикой является из­ менение общей свободной энергии, равное сумме изменений, со­ответствующих, с одной стороны, химическому процессу, а с дру­гой стороны, встраиванию в решетку выделившихся на поверх­ности атомов. Оба слагаемых этой суммы зависят от нескольких химических равновесий и условий закрепления атома в решетке. Следовательно, можно ожидать, что если выделяющиеся атомы занимают на поверхности растущего кристалла положения, не отвечающие условиям энергетического «поощрения» роста, то, они 6}дут удалены с поверхности обратной химической реак­цией.

Одним из важнейших показателей процесса роста кристалла является его линейная скорость, которая характеризует выход химического процесса в данных условиях. Исследование скоро­стей роста кристаллов кремния при водородном восстановлении его хлоридов показало, что при данном соотношении компонен­тов газовой смеси, при изменении температуры скорость роста вначале увеличивается, достигает максимума, а затем постепен­но падает (см. рис. 9.3). Такой характер зависимости скорости роста от температуры обусловлен тем, что химический процесс состоит из нескольких параллельно и последовательно идущих реакций. Поскольку температурная зависимость констант равно­весия разных реакций различна, то суммарный выход реакции должен изменяться в соответствии с изменением относительного выхода отдельных реакций.

Основным вопросом технологии выращивания кристаллов при помощи реакций диссоциации или восстановления химических соединений компонентов кристалла является выбор, синтез и по­дача смеси реагентов.

Состав соединения должен быть таков, чтобы во время его дис­социации или восстановления при температуре процесса роста кристалла все продукты реакции (за исключением атомов компо­нентов кристалла) были газообразными и не встраивались в ре­шетку кристалла. Соединение должно обладать высокой испа­ряемостью при довольно низких температурах, чтобы, по воз­можности, избежать подогрева всех частей установки, по которым движется газовый поток.


Реакция синтеза соединения должна обеспечивать получение продукта высокой чистоты, который можно было бы дополнительно очистить доступными методами (например, ректификацией, сорбцией, зонной плавкой). Желательно, чтобы соединение не взаимодействовало ни с воздухом, ни с влагой, ни с контейнерами, в которых оно хранится. Выход реакции диссоциации или восстановления должен быть регули­руемым в достаточно широком интервале температур путем изме­нения состава парогазовой смеси реагентов. Крайне желательны в данном случае подробные сведения о механизме и кинетике химических процессов, происходящих у поверхности роста.

Разлагающиеся соединения могут быть синтезированы зара­нее или синтезироваться непосредственно во время проведения процесса. Выбор того или иного варианта определяется как воз­можностями получения непосредственно при синтезе продуктов высокой чистоты, так и физико-химическими свойствами соеди­нений. Так. например, если проводится выращивание кристалла двух- или многокомпонентного соединения, свойства которого резко изменяются при изменении состава, а разлагающиеся хи­мические соединения при температуре их испарения являются твердыми, то дозировка смеси их паров не может быть очень точной (так как количество паров определяется температурой и поверхностью испарения, которая в случае дисперсных веществ не поддается учету). Если твердые летучие соединения являют­ся, например, хлоридами, то целесообразно дозировать количество их паров, проводя синтез и одновременное их испарение, не­посредственно в аппарате выращивания путем дозировки коли­чества хлора.

Если разлагающиеся соединения и их продукты реакции яв­ляются летучими при комнатной температуре, то целесообраз­но локализовать реакцию на поверхности роста, обеспечивая на­грев до нужной температуры только подложки. Это достигают, используя локальный метод нагрева (высокочастотный ин­дукционный или радиационный). Если же разлагающиеся соеди­нения имеют нужное давление паров только при повышенной температуре, то необходимо, чтобы стенки рабочей камеры на всем пути следования паровой смеси были обогреваемы.В этом случае следует выбирать конструкционные материалы, инертные по отношению к компонентам реакции. Чаще всего используют­ся аппараты, изготовленные из расплавленного кварца.

Определение оптимальных условий для выращивания моно­кристаллов с заданными свойствами требует в каждом отдель­ном случае долгих и кропотливых исследований, носящих в ос­новном химический и физико-химический характер. Общие пра­вила состоят из следующего: необходима тщательная подготов­ка подложки, на которую предполагается производить наращи­вание; температура на поверхности, а также состав и скорость протока паровой смеси должны быть неизменными в течение все­го процесса.


Содержание раздела