Соединения типа А2В6

         

Метод реакций переноса


Часто в результате синтеза полупроводниковое соединение получается в виде очень мелких и несовершенных кристаллов, чистота которых неудовлетворительна Перекристаллизация раз­лагающихся соединений методами плавления или возгонки ока­зывается по разным причинам или нецелесообразной или невоз­можной. В этих случаях интересные результаты можно получить методом реакций переноса или, как их еще называют, газотранс­портными реакциями.

Сущность реакций переноса заключается в следующем. При взаимодействии газообразного реагента А с твердым, нелетучим веществом, подлежащим переработке (источник), при различных значениях температуры и парциальных давлении могут образо­ваться разные по составу и относительным концентрациям газо­образные молекулы соединении типа АРХ7, "г. е. может осуществ­ляться следующая реакция

:

Х(тв)+А(г) Þ АРХР + АРХР + АРХР .+ • • •

При данных условиях между разными соединениями АРХР, устанавливается некоторое состояние равновесия, характеризуе­мое определенными парциальными давлениями всех газообраз­ных соединений. Если мгновенно изменить температуру системы, то состояние равновесия нарушится и состав компонентов смеси изменится. При некоторых изменениях температуры (или давле­ний) может произойти разложение одного из газообразных про­дуктов с выделением вещества X. Для того чтобы осуществить перекристаллизацию вещества X, его помещают в один конец откачанной кварцевой ампулы, в которую вводится определен­ное (обычно малое) количество газообразного реагента А, после чего ампула запаивается. Ампула помещается в двухзонную печь таким образом, чтобы источник находился при температуре Т1, а зона кристаллизации, расположенная на другом конце ампулы, находилась при температуре Т2. Температуры Т1 и Т2 определяют так, чтобы при Т\ преимущественно образовывалось газообразное соединение АРХР, которое, попадая в зону темпе­ратур Т ч, разлагалось бы, выделяя вещество X и газообразный реагент А (или другое соединение АР`ХР` ).
Реагент А (или АР`ХР` ), диффундируя по ампуле, снова попадает в зону ис­точника, снова образует газообразное соединение АРХР, молеку­лы которого, попадая в зону кристаллизации, распадаются, и т. д. Следовательно, определенное количество газообразного вещест­ва А может обеспечить перенос и перекристаллизацию произ­вольно большого количества вещества X.

Необходимым условием для осуществления переноса наряду с обратимостью гетерогенной реакции является изменение кон­центраций, которые возникают вследствие перепада температур или давлений. Процесс переноса перерабатываемого вещества состоит из трех этапов: 1) гетерогенной реакции газообразного переносчика с веществом источника, 2) перемещения газообраз­ного соединения от источника к зоне роста, 3) гетерогенной ре­акции, в результате которой выделяется переносимое вещество. Следует отметить, что при переносе, например, бинарного со­единения только один из его компонентов переносится за счет обратимой газотранспортной реакции, второй же компонент мо­жет переноситься в свободном состоянии (например, перенос GaAs).

Выбор гетерогенной реакции переноса осуществляют на ос­нове следующих общих правил:

1. Перенос вещества посредством обратимой реакции может происходить лишь в том случае, если переносимый компонент конденсированной фазы фигурирует только в одной части  урав­нения.

2. Реакции, которые при равновесных условиях сильно сме­щены в одну или другую сторону, не приводят к заметному пе­реносу вещества.

3. Эффективность и направление переноса определяются суммарным изменением свободной энергии DG = DH—ТDS. Если AS мало, то направление переноса определяется только знаком DH. При экзотермических реакциях перенос осуществляется в на­правлении от более низкой к более высокой температуре (T1®T2), а при эндотермических — от более высокой к более низкой температуре (Т2®Т1). Если при положительном значении ДЯ изменение энтропии AS имеет большое положительное зна­чение, то перенос происходит в направлении Т2®Т1, если же Д5 имеет достаточно большое отрицательное значение, то перенос происходит в направлении T1®T2.



4. Выход реакции тем больше, чем больше суммарное изме­нение свободной энергии; если значение константы равновесия (log Кр) сильно изменяется при изменении температуры, то вы­ход реакции должен сильно изменяться с изменением темпера­туры.



По закону действия масс константа равновесия гетерогенной реакции определяется парциальными давлениями газообразных компонентов реакции. Перенос осуществляется только при на­личии отклонений от равновесия, как у источника, так и у по­верхности роста. Степень же отклонений от равновесия опреде­ляется температурой и значениями парциальных давлений ком­понентов в обеих зонах.

Скорость массопереноса может быть ограничена либо диффу­зионными и конвекционными процессами, либо скоростью гете­рогенных реакций, протекающих в зоне источника и в зоне крис­таллизации. В большинстве исследованных газотранспортных реакций скорость массопереноса лимитируется процессами пере­мещения газа между зонами реакции.

Если суммарное давление паров в системе не превышает 2— 3 ат, для расчетов скорости массопереноса можно ограничиться учетом только диффузионных процессов.

Для повышения эффективности диффузионного переноса ком­понентов было предложено располагать источник и подложку (в виде пластин) па очень близком расстоянии друг от друга. Зазор между пластинами не должен превышать 0,1 диаметра ис­точника. Необходимый для процесса градиент температуры мож­но регулировать в широких пределах, используя радиационный нагрев. При малых зазорах эффективность переноса близка к 100%, причем состав растущего кристалла довольно точно со­ответствует составу источника, а его конфигурация подобна форме источника. Этот метод, получивший название «сэндвич метода», весьма удобен для изучения кинетики процессов пере­носа в зависимости от температуры и давления паров перенос­чика. С технологической точки зрения его главным недостатком является трудность очистки поверхности кристалла-подложки и источника непосредственно перед проведением процесса.


«Сэнд­ вич метод» применяют главным образом для выращивания эпитаксиальных пленок.

Метод переноса может быть использован для выращивания
крупных монокристаллов. При  проведении таких процессов не­
обходимо локализовать зону выделения вещества на поверхно­сти растущего кристалла. Хорошие   результаты   достигают   при
использовании установки, представленной на рис. 6.35. Для соз­дания резкого и строго локализованного   перепада   температур     I
печь сопротивления   (греющая  спираль,  намотанная  на трубку                  '
из прозрачного кварца)   располагают в водоохлаждаемой вакуумной камере. При вакууме 10~3-10~4 мм рт. ст. теплоизоляция
может  быть обеспечена  несколькими  отражающими  экранами,
расположенными вокруг печи   Если высота   одного    или   двух
внутренних  экранов  будет  меньше высоты греющего элемента,
то на границе верхнего края этого укороченного экрана внутри
печи появится перепад температур  (Т2®Т1).

Предварительно откачанная и запаянная ампула, которая со­держит материал, подлежащий перекристаллизации, и вешество-переносчик (йод хлор, хлороводород, вода), крепится к квар­цевому штоку, который выводится из камеры через вакуумное уплотнение и может приводиться г, поступательное движение Во время разогрева печи вся ампула находится в области более вы­сокой температуры Т2. После достижения стабильного температурного режима включается механизм вытягивания штока, и от­тянутый на конус верхний конец ампулы проходит через зону перепада температур. Если скорость перемещения ампулы не­сколько меньше или равна линейной скорости роста кристалла (которая определяется скоростью поставки молекул, содержа­щих кристаллизуемый материал), то реакция будет происходить на поверхности растущею кристалла При росте в результате реакций переноса линейная скорость роста обычно не превышает одного — нескольких микрон в минуту, а потому длительность процесса выращивания достаточно большою кристалла состав­ляет несколько недель.

Нередко метод реакции переноса применяют не только для выращивания монокристаллов или пленок, но и для очистки ма­териала от примесей.


Содержание раздела