КВ приемник мирового уровня – это очень просто

          

Схемные особенности УВЧ и гетеродинов


“Аматор”: Готовясь к сегодняшней беседе, мы с Незнайкиным пересмотрели массу литературы, касающейся усилителей радиочастоты.

“Спец”: Может поделитесь и со мной полученными знаниями?

“Незнайкин”: Ну, прежде всего, во многих книгах вместо понятия “усилитель высокой частоты” или УВЧ, фигурирует УСИЛИТЕЛЬ СИГНАЛЬНОЙ ЧАСТОТЫ - УСЧ. Или также УСИЛИТЕЛЬ РАДИОЧАСТОТЫ -УРЧ.

“С”: Дельно подмечено. Хотя, в сущности, это всего лишь игра в терминологию. Тем не менее, мы примем это во внимание. Итак?...

“А”: В УСЧ в области умеренно высоких частот наибольшее распространение получили схемы с общим эмиттером (ОЭ). Это в том случае, если применяются биполярные транзисторы. Если используются FET, то их адекватным включением является схема с общим истоком (ОИ). Как уже говорилось ранее, схемы с ОЭ или ОИ позволяют получить НАИБОЛЬШЕЕ усиление по мощности. Можно использовать как германиевые, так и кремниевые транзисторы. Последние более экономичны и стабильны при повышенных температурах.

“С”: Согласен, но есть и еще один нюанс. Новые разработки германиевых транзисторов почти не проводятся, а вот кремниевых — сколько угодно.

“А”: Но в литературе, в основном, приведены схемы селективных или избирательных усилителей, нагрузкой которых являются перестраиваемые по частоте колебательные контура. Это поясняется тем, что необходимо обеспечить высокую чувствительность радиоприемного устройства за счет предварительного усиления полезного сигнала и его частотной селекции от помех.

“С”: Все это так. И в то же время, как говорил Шельменко-денщик: “трошечки, да не так!” Действительно, до сих пор применение высокоселективных усилителей сомнений не вызывало (и не вызывает). Во многих случаях.., А вот в приемниках с ПРЕОБРАЗОВАНИЕМ ВВЕРХ дело обстоит ИНАЧЕ. Здесь нужен именно ШИРОКОПОЛОСНЫЙ входной усилитель. При этом, что совершенно естественно, МАЛОШУМЯЩИЙ и с хорошим ДИНАМИЧЕСКИМ ДИАПАЗОНОМ. И в то же время, попытка применить для этого АПЕРИОДИЧЕСКИЕ усилители обычного типа с резисторной нагрузкой, кроме разочарования и досады, других сколько-нибудь положительных эмоций у разработчиков так и не вызвала!


“А”: Получается, что ни селективные, ни апериодические усилители для этого не годятся?
“С”: Резистивные УСЧ (УРЧ, УВЧ) используются в диапазонах ДВ и СВ... Но не волнуйтесь, друзья мои, все вовсе не так плохо! Как любит говорить один мой знакомый философ: “... если тебе предлагают на выбор, одно из двух ... выбирай третий путь!” Так и в радиотехнике. Техническая мысль не дремала! Вот так и вошли в жизнь усилители, основанные на использовании ШПТЛ!
“А”: Мы начинали разговор о ШПТЛ, но мне еще сложно представить себе схему усилителя, использующего этот компонент!
“С”: Я уже упоминал о том, что ШПТЛ бывают самыми разнообразными. С простыми, достаточно сложными и очень сложными обмотками. И применяются ШПТЛ не только в усилителях, но и в смесителях сигналов, для преобразования импедансов и т.п. Мне приходилось встречать достаточно разнообразные усилители на ШПТЛ. Но ВСЕ ОНИ основаны на применении ОТРИЦАТЕЛЬНОЙ ОБРАТНОЙ СВЯЗИ или ООС. Наиболее простой схемой этого типа с использованием преимуществ ШПТЛ, является так называемая R-структура. Но имеется и еще более удачная схема, основанная на, так называемой, С-структуре. Несмотря на “простоту”, ВЧ-усилители на ШПТЛ, имеющие С-структуру, характеризуются ОЧЕНЬ МАЛЫМИ искажениями входного сигнала.
“А”: А как у С-структур обстоит дело со стабильностью параметров?
“С”: Я бы сказал так: ВЫШЕ ВСЯКИХ ПОХВАЛ ! Поэтому я здесь привожу основную схему, которую мы будем полагать базовой (рис. 23.1)
Схемные особенности УВЧ и гетеродинов

Более того, ниже я привожу АЧХ представленного С-усилителя Для того случая, когда ШПТЛ намотан на кольце типа М 0,16 ВТ-8 типоразмер К 10x6x2 и имеет 16 витков. Коэффициент усиления каскада зависит от величины R,. При rc = 10 Ом, усиление по напряжению (именно его мы наблюдаем на экране осциллографа) равно 8—10. Увеличение Re улучшает линейность, но уменьшает коэффициент усиления. Поэтому, в данном случае, взято оптимальное значение Re.
“А”: А применить кольцо на высокочастотном феррите типа 50ВЧ или ЗОВЧ, не изменяя количества витков, возможно?


“С”: Вполне .. Но старайтесь придерживаться типоразмера.
“А”: АЧХ действительно имеет такую равномерность или это преувеличение?
“Н”: А какой тип транзистора лучше всего применить в усилителе?
“С”: АЧХ усилителей С-структуры на ШПТЛ действительно отличаются равномерностью частотной характеристики в широком диапазоне частот Что касается типа транзистора, то в малошумящих усилителях из транзисторов, производимых в СНГ, можно рекомендовать только: КТ399А, КТ368А, КТ3120А.
“Н”: А если применить “семечку” — КТ315 или, например, КТ316?
“С”: Коэффициент усиления каскада упадет, примерно, в 1,5 раза! Полоса, практически, не меняется. Но, и КТ315, и КТ316 не являются оптимальными для применения в малошумящих каскадах радиоприемных устройств. Поэтому инициатива применения в этой схеме случайных транзисторов не является признаком высокого интеллекта.
“А”: Ну, теперь на очереди — гетеродин?
“Н”: А их в приемнике не меньше двух! Уточни, какой именно ты имеешь в виду?
“С”: А что тут много рассуждать? Начнем с ГПД — генератора плавного диапазона. Кстати, дорогой Аматор, я все забываю как-то узнать у тебя. На тот кварцевый фильтр, который тебе удалось раздобыть, есть какие-нибудь паспортные данные?
“А”: Да, вот они! Фильтр типа ФП2П-4-1-В.
Номинальная частота — 55,5 МГц; Ширина полосы пропускания по уровню 3 дБ — 16 кГц; Относительное затухание в полосе задерживания — 60 дБ; Затухание вносимое — 0,2дБ; Сопротивление нагрузки: RН.ВХ,кОм —2; RН.ВЫХ ,кОм —2; Емкость нагрузки: СН.ВХ, пФ — 50. “С”: Ну что же, неплохо. Но, чтобы вышесказанное было более наглядным, попробуем изобразить АЧХ этого фильтра на фоне АЧХ обыкновенного селективного усилителя ВЧ, которую так любят приводить в монографиях по радиотехнике многие авторы (рис. 23.2).
Схемные особенности УВЧ и гетеродинов

“Н”: То есть, даже обыкновенный контур, имеющий Q = 100 обладает в ТРИДЦАТЬ ПЯТЬ РАЗ более широкой полосой пропускания, чем кварцевый фильтр ФП2П-4-1-В! Значит и ШУМИТ этот фильтр в 35 раз меньше?
“С”: Совершенно верно! Даже не в 35, а, примерно, в 50, если принять во внимание наличие “пьедестала” в колебательном контуре! Поэтому самое лучшее, что нам остается сделать, при использовании этого фильтра, это — постараться не растерять те великолепные возможности, которые могут обеспечить кварцевые фильтры подобного класса!


“А”: Не имей мы этого фильтра, эквивалентная добротность которого достигает 5000, подобной характеристики нам не получить!
“С”: Ну, это преувеличение! “Цепь Юзвинского” позволяет получить такую же характеристику. Но в этой цепи немало преобразователей и активных элементов. Она потребляет ток и ее “принципиалка” значительно сложнее.
“Н”: Но мы говорили о ГПД?
“С”: Вот о нем-то и речь! Теперь, имея РЕАЛЬНЫЙ фильтр, мы ЗНАЕМ, что наша ПЕРВАЯ ПРОМЕЖУТОЧНАЯ ЧАСТОТА равна 55,5 МГц! Теперь известны и частотные параметры ГПД. В самом деле:
1-ый КВ-диапазон — 30—25 МГц; диапазон ГПД — 85,5—80,5 МГц; 2-ой КВ-диапазон — 25—22 МГц; диапазон ГПД — 80,5—77,5 МГц; 3-ий КВ-диапазон — 22—18 МГц; диапазон ГПД — 77,5—73,5 МГц; 4-ый КВ-диапазон —18—15 МГц; диапазон ГПД — 73,5-70,5 МГц; 5-ый КВ-диапазон —15—12 МГц; диапазон ГПД - 70,5-67,5 МГц; 6-ой КВ-диапазон — 12—9 МГц; диапазон ГПД — 67,5—64,5 МГц; 7-ой КВ-диапазон — 9—7 МГц; диапазон ГПД — 64,5—62,5 МГц; 8-ой КВ-диапазон — 7—5 МГц; диапазон ГПД — 62,5—60,5 МГц. Таким образом, для перекрытия всех полурастянутых KB диапазонов, ГПД должен перестраиваться по частоте от:
f МАКС = 85,5 МГц до fМИН= 60,5 МГц.
При этом стабильность частоты должна быть достаточно высокой!
“А”: Я полагаю, что схемы гетеродинов для обычных приемников нас не спасут?
“С”: Никоим образом, поскольку они “типичное не то”! Кроме того, перестраиваемым элементом ГПД является не конденсатор переменной емкости, а варикапная матрица. О синтезаторах частоты мы уже упоминали. Так вот, у нас они применены не будут! Но гетеродин — дело очень серьезное, особенно в приемнике с преобразованием ВВЕРХ! Поэтому предлагаю следующую, опробованную на практике, принципиальную электрическую схему ГПД для нашего радиоприемника. В ее основе — модификация великолепной, профессиональной американской разработки!
“Н”: Так почему бы нам побыстрее не зарисовать эту “принципиалочку”?!
“А”: Что мы и делаем... Уважаемый Спец, пока мы рисуем, расскажите, чем интересна эта схема (рис. 23.3)?


Схемные особенности УВЧ и гетеродинов

“С”: Прежде всего тем, что по своим параметрам является профессиональной! Хотя бы из-за того, что наличие в задающем генераторе достаточно сильной обратной связи, позволяет получить спектрально чистый сигнал, содержащий очень мало гармоник! Да и амплитуда выходного напряжения задающего генератора весьма невелика и составляет, примерно, 0,25 вольта. Но, будучи подана на вход буферного усилителя, а с его выхода на оконечный широкополосный усилитель, достигает величины 3—5 вольт!
“Н”: Здесь на схеме я вижу, по крайней мере, два ШПТЛ! Их данные отличаются отданных ШПТЛ для УВЧ?
“С”: Да, несколько отличаются. Прежде всего, это касайся количества витков. ШПТЛ, обозначенные на схеме, как Tpl и Тр2 — одинаковы полностью!. Способ намотки точно такой же, как и для ШПТЛ УВЧ. Но количество витков — 10; провод — ПЭВ-2-0,2; кольца М 0,1б-ВТ-8. Типоразмер: К 10x6x2.
“А”: То, что варикапы запитываются высокостабильным напряжением +30 вольт, это понятно! Не зря же мы так подробно рассматривали принципиальную электрическую схему для его получения! Но вот как быть с низковольтным питанием ГПД? Запитывать непосредственно от общего стабилизатора +12 вольт?
“С”: Друзья мои! Как говорилось в сравнительно недавнем прошлом, “экономика должна быть экономной”! Бессмысленная сама по себе, эта фраза, будучи применена буквально, к вопросу низковольтного питания нашего ГПД, для нас может обернуться крушением всех надежд! Я имею в виду разрабатываемый приемник!
“А”: Иными словами, здесь экономия на качестве электропитания не проходит?
“С”: Ни в коем случае и никогда! Поэтому, не пускаясь в дальнейшие рассуждения, приведем схему прецизионного автономного стабилизатора, который всего лучше выполнить на ОДНОЙ ПЛАТЕ С ГПД. Заметьте, что входное напряжение мы берем с ВЫХОДА СН + 12 вольт!
“Н”: Но вы еще не сказали, какого типа каркас используется в катушке lК задающего генератора?
“С”: Вот здесь и используется каркас типа VI! А теперь зарисуем “прин-ципиалочку” прецизионного стабилизатора для ГПД (рис. 23.4).


Схемные особенности УВЧ и гетеродинов

“А”: У меня вопросов не имеется. Поскольку номиналы резисторов уточним позднее.
“Н”: У меня тоже!
“С”: В таком случае, раз уж мы говорим о гетеродинах, я полагаю что здесь, ниже, мы представим и принципиальную схему второго, кварцевого гетеродина. А уже после этого перейдем к рассмотрению смесителей.
“А”: А какую частоту генерации мы принимаем для второго гетеродина, частота колебаний которого стабилизирована кварцем?
“С”: Все зависит от того, какую мы выберем ВТОРУЮ ПРОМЕЖУТОЧНУЮ частоту. Из определенных конструктивных соображений, вторая ПЧ (промежуточная частота) выбирается равной 1,465 кГц. Итак, вторую ПЧ принимаем равной именно этой величине — 1,465 кГц!
“А”: Следовательно, второй гетеродин будет содержать кварц, частота резонанса которого — 54,045 МГц?
“С”: Вот что значит прилежно изучать в школе математику! Следует сказать, что резонансную частоту LC-генератора можно стабилизировать, если в цепь обратной связи включить кварцевый резонатор. Для обеспечения лучшей стабильности, целесообразно использовать частоту его (кварца) последовательного резонанса. В качестве исходных схем генераторов, обычно используются схемы Хартли или Колпитца.
“А”: А что они из себя представляют?
“С”: Да вот, посмотрите на рис. 23.5. Для возникновения колебаний необходимо, чтобы колебательный контур был настроен на частоту кварцевого резонатора. Но можно выбрать частоту колебательного контура как ЦЕЛОЕ КРАТНОЕ резонансной частоты колебаний кварца и возбудить, тем самым, резонатор на соответствующей КРАТНОЙ ГАРМОНИКЕ!
Схемные особенности УВЧ и гетеродинов

“Н”: Какую же из двух схем выбирать?
“А”: Можешь кинуть монетку... А там — как ляжет! А что посоветует нам Спец?
“С”: Я просто приведу практически проверенную и хорошо зарекомендовавшую себя принципиальную схему (рис. 23.6).
Схемные особенности УВЧ и гетеродинов

“А”: Задающий генератор здесь собран по схеме Хартли, это понятно! А какие параметры имеет задающая индуктивность?
“С”: Каркас этой катушки изготовлен из фторопласта и соответствует типу V.
“Н”: А что это за включение двух транзисторов после задающего генератора?


“А”: Это одно из очень удачных схемотехнических решений — так называемая КАСКОДНАЯ СХЕМА. В данном случае применена каскодная схема с емкостной связью! Среди особых достоинств этих схем можно полагать следующие:
  1. Малую внутреннюю обратную связь, почти на ДВА ПОРЯДКА меньшую, чем у обычного каскада с ОЭ. Это обеспечивает ВЫСОКИЙ УСТОЙЧИВЫЙ коэффициент усиления.
  2. Коэффициент шума всей схемы равен коэффициенту шума первого каскада.
  3. Выходная проводимость мала, что позволяет применять ПОЛНОЕ включение контура в цепь коллектора выходного транзистора. Это, в свою очередь, обеспечивает ВЫСОКУЮ СЕЛЕКТИВНОСТЬ.
  4. Схема обладает ВЫСОКИМ ВХОДНЫМ сопротивлением, следовательно, не нагружает задающий генератор.
“Н”: А насколько эта схема требовательна к высокостабильному питанию?
“С”: Ну, в этом отношении, ВСЕ гетеродины — гурманы! Но ... в разной степени. Поскольку в данном случае колебания стабилизированы кварцем, то вполне достаточно ограничиться упрощенным стабилизатором. Вот, например, таким (рис. 23.7).
Схемные особенности УВЧ и гетеродинов

“А”: Это для запитки всего генератора или только КАСКОДНОГО УСИЛИТЕЛЯ?
“С”: Только КАСКОДНИКА! Что же касается собственно задающего генератора, то, как говорится, кашу маслом не испортишь! Поэтому для задающего генератора применим вот такой, рассмотренный выше, вариант СН (рис. 23.8).
Схемные особенности УВЧ и гетеродинов

“А”: Как я понимаю, кварцевый генератор вместе с автономным стабилизатором, лучше собрать на отдельной плате?
“С”: Дружище, ты в этом абсолютно прав! Ну, а если всю эту прекрасную технику ты разместишь в аккуратном, экранированном блочке — обечайке и выведешь его выход на ВЧ-разъем, то, кроме хорошего, ничего плохого в этом просто не будет!
“А”: Я, пожалуй, последую этому доброму, дружескому совету!
>

Содержание раздела